Algorithms

Asymptotic Analysis

- Runtime Analysis and Big Oh - O($)$

■ Complexity Classes and Curse of Exponential Time
$\square \Omega(\cdot), \Theta(\cdot), o(\cdot), \omega(\cdot)$ - Relational properties

Imdad ullah Khan

Comparing Algorithms

Given two algorithms for the same problem which one is "better"?
Which one has smaller runtime?

We can compare integers
$37<49 ?$

Comparing Algorithms

Given two algorithms for the same problem which one is "better"?
Which one has smaller runtime?

We can compare integers
We can compare real numbers
$37<49 ?$
$37.05<22.49 ?$

Comparing Algorithms

Given two algorithms for the same problem which one is "better"?
Which one has smaller runtime?

We can compare integers
We can compare real numbers
$37<49 ?$

We can compare signed real numbers
$37.05<22.49 ?$
$-37.5<-22.4 ?$

Comparing Algorithms

Given two algorithms for the same problem which one is "better"?
Which one has smaller runtime?

We can compare integers
We can compare real numbers
We can compare signed real numbers

Can we compare arrays?

$$
\begin{aligned}
& 37<49 ? \\
& 37.05<22.49 ? \\
& -37.5<-22.4 ?
\end{aligned}
$$

| 36 | 9 | 22 |
| :--- | :--- | :--- | | 8 | 35 | 24 |
| :--- | :--- | :--- |

Comparing Algorithms

Given two algorithms for the same problem which one is "better"?
Which one has smaller runtime?

We can compare integers
We can compare real numbers
We can compare signed real numbers

Can we compare arrays?

Can we compare functions?

$$
\begin{aligned}
& 37<49 ? \\
& 37.05<22.49 ? \\
& -37.5<-22.4 ?
\end{aligned}
$$

| 36 | 9 | 22 |
| :--- | :--- | :--- | | 8 | 35 | 24 |
| :--- | :--- | :--- |

$$
n^{2}+2 n<3 n^{2}
$$

Function: List Representation

Let X and Y be two sets. A function f maps each element of X to exactly one element of Y
$f: X \mapsto Y$

$$
f(x)=y
$$

- X is the domain of f
- y is the image of x
- Y is the codomain of f
- x is the pre-image of y

Function: List Representation

Let X and Y be two sets. A function f maps each element of X to exactly one element of Y

$$
f: X \mapsto Y \quad f(x)=y
$$

- X is the domain of f
- y is the image of x
- Y is the codomain of f
- x is the pre-image of y

Worstcase runtime of algorithms characterized as functions of input sizes
input sizes

1	2	3		5	6	6	7	8
8	9	23	23	16	19	34	29	\cdots

worst case runtimes

Asymptotic Notation

- We use asymptotic analysis of functions to analyze algorithms running time
- Characterize running time for all inputs instances of a certain size (so worst-case) with just one runtime function

■ Small inputs are not much of a problem, we want to learn behavior of an algorithm on large inputs

Asymptotic Notation

Our foremost goals in analysis of algorithms are to

Asymptotic Notation

Our foremost goals in analysis of algorithms are to

Goal 1: Determine the runtime of an algorithm on inputs of large size

Asymptotic Notation

Our foremost goals in analysis of algorithms are to

Goal 1: Determine the runtime of an algorithm on inputs of large size

Goal 2: Determine how the runtime grows with increasing inputs
\triangleright How the runtime changes when input size is doubled/tripled?

Asymptotic Analysis: Big Oh

Definition (Big Oh)

A function $g(n) \in O(f(n))$ if there exists constants $c>0$ and $n_{0} \geq 0$ such that

$$
\forall n \geq n_{0} \quad g(n) \leq c \cdot f(n)
$$

Asymptotic Analysis: Big Oh

Definition (Big Oh)

A function $g(n) \in O(f(n))$ if there exists constants $c>0$ and $n_{0} \geq 0$ such that

$$
\forall n \geq n_{0} \quad g(n) \leq c \cdot f(n)
$$

- $O(f(n))$ is a set of functions
\triangleright We abuse the notation and say $g(n)=O(f(n))$ for $g(n) \in O(f(n))$

Asymptotic Analysis: Big Oh

Definition (Big Oh)

A function $g(n) \in O(f(n))$ if there exists constants $c>0$ and $n_{0} \geq 0$ such that

$$
\forall n \geq n_{0} \quad g(n) \leq c \cdot f(n)
$$

- $O(f(n))$ is a set of functions
\triangleright We abuse the notation and say $g(n)=O(f(n))$ for $g(n) \in O(f(n))$
- A notion of $a \leq b$ for functions as for real numbers
- $f(n)$ is an asymptotic upper bound on $g(n)$

Asymptotic Analysis: Big Oh

Definition (Big Oh)

A function $g(n) \in O(f(n))$ if there exists constants $c>0$ and $n_{0} \geq 0$ such that

$$
\forall n \geq n_{0} \quad g(n) \leq c \cdot f(n)
$$

- $O(f(n))$ is a set of functions
\triangleright We abuse the notation and say $g(n)=O(f(n))$ for $g(n) \in O(f(n))$
- A notion of $a \leq b$ for functions as for real numbers
- $f(n)$ is an asymptotic upper bound on $g(n)$

Provides the right framework for both our goals

Big Oh

A function $g(n) \in O(f(n))$ if there exists constants $c>0$ and $n_{0} \geq 0$ such that

$$
\forall n \geq n_{0} \quad g(n) \leq c \cdot f(n)
$$

$$
2 n^{2}+3 n+7=O\left(n^{2}\right)
$$

$$
\triangleright c=3 \text { and } n_{0}=5
$$

Big Oh

A function $g(n) \in O(f(n))$ if there exists constants $c>0$ and $n_{0} \geq 0$ such that

$$
\forall n \geq n_{0} \quad g(n) \leq c \cdot f(n)
$$

$3 n^{3}+5 n \log n=O\left(n^{3}\right)$

$$
\triangleright c=4 \text { and } n_{0}=3
$$

Big Oh: Common Rules

The following two rules help simplify finding asymptotic upper bounds

Big Oh: Common Rules

The following two rules help simplify finding asymptotic upper bounds

- Lower order terms are ignored
- n^{a} dominates n^{b} if $a>b$

■ Multiplicative constants are omitted

- e.g. $7 n^{4}+3 n^{3}+10=O\left(n^{4}\right)$
- e.g. $3 n^{3}+5 n \log n=O\left(n^{3}\right)$

Big Oh: Common Rules

A function $g(n) \in O(f(n))$ if there exists constants $c>0$ and $n_{0} \geq 0$ such that

$$
\forall n \geq n_{0} \quad g(n) \leq c \cdot f(n)
$$

$$
\begin{aligned}
f(n) & =p n^{2}+q n+r \\
& \leq|p| n^{2}+|q| n^{2}+|r| n^{2} \\
& =(|p|+|q|+|r|) n^{2}
\end{aligned}
$$

This is true for all $n \geq 1$, hence with $c=(|p|+|q|+|r|)$ we get that $f(n)=O\left(n^{2}\right)$

Big Oh: Justification to ignore lower order terms

Let the runtime of algorithm \mathcal{A} be $\quad T(n):=n^{2}+10 n$

$$
T(n)=O\left(n^{2}\right)
$$

Big Oh: Justification to ignore lower order terms

Let the runtime of algorithm \mathcal{A} be $\quad T(n):=n^{2}+10 n$

$$
T(n)=O\left(n^{2}\right)
$$

Consider an input size of 10^{9}, then

$$
n^{2}+100 n=10^{18}+10^{11} \quad \text { and } \quad n^{2}=10^{18}
$$

$$
\text { fractional error }=\frac{10^{11}}{10^{18}}=10^{-7}
$$

Goal 1: Determine the runtime of an algorithm on inputs of large size

Big Oh: Justification to ignore lower order terms

Let the runtime of algorithm \mathcal{A} be $\quad T(n):=n^{2}+10 n$

$$
T(n)=O\left(n^{2}\right)
$$

Consider an input size of 10^{9}, then

$$
n^{2}+100 n=10^{18}+10^{11} \quad \text { and } \quad n^{2}=10^{18}
$$

$$
\text { fractional error }=\frac{10^{11}}{10^{18}}=10^{-7}
$$

Goal 1: Determine the runtime of an algorithm on inputs of large size

For $n=10^{9}, T(n)=n^{2}+10 n$ is only 0.00001% more than n^{2}

Big Oh: Justification to ignore Coefficients

Coefficients do not really affect growth of functions

Big Oh: Justification to ignore Coefficients

Coefficients do not really affect growth of functions

Goal 2: Determine how the runtime grows with increasing inputs

Big Oh: Justification to ignore Coefficients

Coefficients do not really affect growth of functions

Goal 2: Determine how the runtime grows with increasing inputs

Linear $f(n)=5 n$

$$
\begin{aligned}
n & : 5 n \\
2 n & : 2(5 n) \\
3 n & : 3(5 n) \\
4 n & : 4(5 n)
\end{aligned}
$$

Big Oh: Justification to ignore Coefficients

Coefficients do not really affect growth of functions

Goal 2: Determine how the runtime grows with increasing inputs

Linear $f(n)=5 n$

$2 n: 2(5 n)$
$3 n: 3(5 n)$
$4 n: 4(5 n)$

Quadratic $f(n)=7 n^{2}$

$$
\begin{aligned}
n & : 7 n^{2} \\
2 n & : 4\left(7 n^{2}\right) \\
3 n & : 9\left(7 n^{2}\right) \\
4 n & : 16\left(7 n^{2}\right)
\end{aligned}
$$

Big Oh: Justification to ignore Coefficients

Coefficients do not really affect growth of functions

Goal 2: Determine how the runtime grows with increasing inputs

Linear $f(n)=5 n \quad$ Quadratic $f(n)=7 n^{2} \quad$ Cubic $f(n)=2 n^{3}$

n	$: 5 n$
$2 n$	$: 2(5 n)$
$3 n$	$: 3(5 n)$
$4 n$	$: 4(5 n)$

$$
n: 7 n^{2}
$$

$$
2 n: 4\left(7 n^{2}\right)
$$

$$
3 n: 9\left(7 n^{2}\right)
$$

$$
4 n: 16\left(7 n^{2}\right)
$$

Non tightness of Big Oh

Note: $O(\cdot)$ expresses only an upper bound on growth rate of a function
\triangleright It does not necessarily give the exact growth rate of the function

For example, $f(n)=3 n^{2}+4 n+5=O\left(n^{2}\right)$ it is also $O\left(n^{3}\right)$
Indeed, $f(n) \leq 12 n^{2}$ and also $f(n) \leq 12 n^{3}$

Big Oh: Finding the right constants

Let $g(n)=7 n+4 \quad$ and $\quad f(n)=n$
$g(n)=O(f(n))$
\triangleright take $c=8$ and $n_{0}=4, \quad 7 n+4 \leq 8(n)$ whenever $n_{0} \geq 4$,

1 To get c: We want $7 n+4 \leq c n$
Solving the inequality for c, we get $c \geq \frac{7 n}{n}+\frac{4}{n}$
For $n \geq 4,8 \geq 7+\frac{4}{n}$
\triangleright Observe that $\lim _{n \rightarrow \infty} \frac{7 n+4}{n} \rightarrow 7$, but this $(c=7)$ would require n_{0} to be approaching ∞, so we take $c=8$

2 To get n_{0} : We want $7 n+4 \leq 8 n$, this is true whenever $n \geq 4$

Big Oh: Finding the right constants

Big Oh: Finding the right constants

Let $f(n)=6 n+24 \quad$ and $\quad h(n)=n^{2}$,

$$
f(n)=O(h(n))
$$

As $\lim _{n \rightarrow \infty} \frac{6 n+24}{n^{2}} \rightarrow 0$, so any $c>0$ will work.
for $c=1$, we want
$6 n+24 \leq 1 \cdot n^{2}$
which is true whenever $n \geq 10$
So we choose $c=1$ and $n_{0}=10$
More examples in lecture notes and problem set

Big Oh: Finding the right constants

Asymptotic-Complexity Classes

Class Name	Class Symbol	Example
Constant	$O(1)$	Comparison of two integers
Logarithmic	$O(\log (n))$	Binary Search, Exponentiation
Linear	$O(n)$	Linear Search
Log-Linear	$O n(\log (n))$	Merge Sort
Quadratic	$O\left(n^{2}\right)$	Integer multiplications
Cubic	$O\left(n^{3}\right)$	Matrix multiplication
Polynomial	$O\left(n^{a}\right), a \in \mathbb{R}$	
Exponential	$O\left(a^{n}\right), a \in \mathbb{R}$	Print all subsets
Factorial	$O(n!)$	Print all permutations
$n!\gg 2^{n} \gg n^{3} \gg n^{2} \gg n l o g n>n \gg l o g n \gg 1$		

Growth Rates of Functions

Big Oh: Why does it make sense?

Runtimes of algorithms of different runtime for input size n (on 1 GHz PC). Assume that each operation takes 1 ns

n	$O(\log n)$	$O(n)$	$O(n \log n)$	$O\left(n^{2}\right)$	$O\left(2^{n}\right)$	$O(n!)$
10	$0.003 \mu s$	$0.01 \mu \mathrm{~s}$	$0.033 \mu s$	$0.1 \mu \mathrm{~s}$	$1 \mu s$	3.63 ms
20	$0.004 \mu \mathrm{~s}$	$0.02 \mu s$	$0.086 \mu s$	$0.4 \mu \mathrm{~s}$	1 ms	77.1 yrs
30	$0.005 \mu s$	0.03 $\mu \mathrm{s}$	$0.147 \mu s$	$0.9 \mu \mathrm{~s}$	1 sec	$8 \cdot 10^{15} \mathrm{yrs}$
40	$0.005 \mu \mathrm{~s}$	$0.04 \mu s$	$0.213 \mu s$	$1.6 \mu \mathrm{~s}$	18.3 min	very long
50	$0.006 \mu s$	$0.05 \mu s$	$0.282 \mu s$	$2.5 \mu \mathrm{~s}$	13 days	very long
100	$0.007 \mu \mathrm{~s}$	$0.10 \mu s$	$0.644 \mu s$	$10 \mu s$	$4 \cdot 10^{13} \mathrm{yrs}$	very long
10^{3}	$0.010 \mu \mathrm{~s}$	$1.00 \mu \mathrm{~s}$	$9.966 \mu s$	1 ms	very long	very long
10^{4}	$0.013 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$130 \mu s$	100 ms	very long	very long
10^{5}	$0.017 \mu \mathrm{~s}$	0.10 ms	1.67 ms	10sec	very long	very long
10^{6}	$0.020 \mu \mathrm{~s}$	1 ms	19.93 ms	16.7 min	very long	very long
10^{7}	$0.023 \mu \mathrm{~s}$	0.01 sec	0.23 sec	1.16 days	very long	very long
10^{8}	$0.027 \mu \mathrm{~s}$	0.10 sec	2.66 sec	115.7 days	very long	very long
10^{9}	$0.030 \mu \mathrm{~s}$	1 sec	29.90sec	31.7 yrs	very long	very long

