
Algorithms

Asymptotic Analysis

Runtime Analysis and Big Oh - O(·)

Complexity Classes and Curse of Exponential Time

Ω(·), Θ(·), o(·), ω(·) - Relational properties

Imdad ullah Khan

Imdad ullah Khan (LUMS) Asymptotic Analysis 1 / 1

Comparing Algorithms

Given two algorithms for the same problem which one is “better”?

Which one has smaller runtime?

We can compare integers 37 < 49 ?

We can compare real numbers 37.05 < 22.49 ?

We can compare signed real numbers −37.5 < −22.4 ?

Can we compare arrays? 36 9 22 < 8 35 24 ?

Can we compare functions? n2 + 2n < 3n2

Imdad ullah Khan (LUMS) Asymptotic Analysis 2 / 1

Comparing Algorithms

Given two algorithms for the same problem which one is “better”?

Which one has smaller runtime?

We can compare integers 37 < 49 ?

We can compare real numbers 37.05 < 22.49 ?

We can compare signed real numbers −37.5 < −22.4 ?

Can we compare arrays? 36 9 22 < 8 35 24 ?

Can we compare functions? n2 + 2n < 3n2

Imdad ullah Khan (LUMS) Asymptotic Analysis 2 / 1

Comparing Algorithms

Given two algorithms for the same problem which one is “better”?

Which one has smaller runtime?

We can compare integers 37 < 49 ?

We can compare real numbers 37.05 < 22.49 ?

We can compare signed real numbers −37.5 < −22.4 ?

Can we compare arrays? 36 9 22 < 8 35 24 ?

Can we compare functions? n2 + 2n < 3n2

Imdad ullah Khan (LUMS) Asymptotic Analysis 2 / 1

Comparing Algorithms

Given two algorithms for the same problem which one is “better”?

Which one has smaller runtime?

We can compare integers 37 < 49 ?

We can compare real numbers 37.05 < 22.49 ?

We can compare signed real numbers −37.5 < −22.4 ?

Can we compare arrays? 36 9 22 < 8 35 24 ?

Can we compare functions? n2 + 2n < 3n2

Imdad ullah Khan (LUMS) Asymptotic Analysis 2 / 1

Comparing Algorithms

Given two algorithms for the same problem which one is “better”?

Which one has smaller runtime?

We can compare integers 37 < 49 ?

We can compare real numbers 37.05 < 22.49 ?

We can compare signed real numbers −37.5 < −22.4 ?

Can we compare arrays? 36 9 22 < 8 35 24 ?

Can we compare functions? n2 + 2n < 3n2

Imdad ullah Khan (LUMS) Asymptotic Analysis 2 / 1

Function: List Representation

Let X and Y be two sets. A function f maps each element of X to
exactly one element of Y

f : X 7→ Y

X is the domain of f

Y is the codomain of f

f (x) = y

y is the image of x

x is the pre-image of y

Worstcase runtime of
algorithms characterized
as functions of input sizes

1

2

3

4

6

7

8

...

9

8

34

19

71

29

91

16

23

...

Z+ Z+

in
p
u
t
si
ze

s

worst case runtimes

5
1 2 3 4 5 6 7 8 · · ·
8 9 23 23 16 19 34 29 · · ·

input sizes

worst case runtimes

Imdad ullah Khan (LUMS) Asymptotic Analysis 3 / 1

Function: List Representation

Let X and Y be two sets. A function f maps each element of X to
exactly one element of Y

f : X 7→ Y

X is the domain of f

Y is the codomain of f

f (x) = y

y is the image of x

x is the pre-image of y

Worstcase runtime of
algorithms characterized
as functions of input sizes

1

2

3

4

6

7

8

...

9

8

34

19

71

29

91

16

23

...

Z+ Z+

in
p
u
t
si
ze

s

worst case runtimes

5
1 2 3 4 5 6 7 8 · · ·
8 9 23 23 16 19 34 29 · · ·

input sizes

worst case runtimes

Imdad ullah Khan (LUMS) Asymptotic Analysis 3 / 1

Asymptotic Notation

We use asymptotic analysis of functions to analyze algorithms
running time

Characterize running time for all inputs instances of a certain size (so
worst-case) with just one runtime function

Small inputs are not much of a problem, we want to learn behavior of
an algorithm on large inputs

Imdad ullah Khan (LUMS) Asymptotic Analysis 4 / 1

Asymptotic Notation

Our foremost goals in analysis of algorithms are to

Goal 1: Determine the runtime of an algorithm on inputs of large size

Goal 2: Determine how the runtime grows with increasing inputs

. How the runtime changes when input size is doubled/tripled?

Imdad ullah Khan (LUMS) Asymptotic Analysis 5 / 1

Asymptotic Notation

Our foremost goals in analysis of algorithms are to

Goal 1: Determine the runtime of an algorithm on inputs of large size

Goal 2: Determine how the runtime grows with increasing inputs

. How the runtime changes when input size is doubled/tripled?

Imdad ullah Khan (LUMS) Asymptotic Analysis 5 / 1

Asymptotic Notation

Our foremost goals in analysis of algorithms are to

Goal 1: Determine the runtime of an algorithm on inputs of large size

Goal 2: Determine how the runtime grows with increasing inputs

. How the runtime changes when input size is doubled/tripled?

Imdad ullah Khan (LUMS) Asymptotic Analysis 5 / 1

Asymptotic Analysis: Big Oh

Definition (Big Oh)

A function g(n) ∈ O
(
f (n)

)
if there exists constants c > 0 and n0 ≥ 0

such that
∀n ≥ n0 g(n) ≤ c · f (n)

O(f (n)) is a set of functions

. We abuse the notation and say g(n) = O(f (n)) for g(n) ∈ O(f (n))

A notion of a ≤ b for functions as for real numbers

f (n) is an asymptotic upper bound on g(n)

Provides the right framework for both our goals

Imdad ullah Khan (LUMS) Asymptotic Analysis 6 / 1

Asymptotic Analysis: Big Oh

Definition (Big Oh)

A function g(n) ∈ O
(
f (n)

)
if there exists constants c > 0 and n0 ≥ 0

such that
∀n ≥ n0 g(n) ≤ c · f (n)

O(f (n)) is a set of functions

. We abuse the notation and say g(n) = O(f (n)) for g(n) ∈ O(f (n))

A notion of a ≤ b for functions as for real numbers

f (n) is an asymptotic upper bound on g(n)

Provides the right framework for both our goals

Imdad ullah Khan (LUMS) Asymptotic Analysis 6 / 1

Asymptotic Analysis: Big Oh

Definition (Big Oh)

A function g(n) ∈ O
(
f (n)

)
if there exists constants c > 0 and n0 ≥ 0

such that
∀n ≥ n0 g(n) ≤ c · f (n)

O(f (n)) is a set of functions

. We abuse the notation and say g(n) = O(f (n)) for g(n) ∈ O(f (n))

A notion of a ≤ b for functions as for real numbers

f (n) is an asymptotic upper bound on g(n)

Provides the right framework for both our goals

Imdad ullah Khan (LUMS) Asymptotic Analysis 6 / 1

Asymptotic Analysis: Big Oh

Definition (Big Oh)

A function g(n) ∈ O
(
f (n)

)
if there exists constants c > 0 and n0 ≥ 0

such that
∀n ≥ n0 g(n) ≤ c · f (n)

O(f (n)) is a set of functions

. We abuse the notation and say g(n) = O(f (n)) for g(n) ∈ O(f (n))

A notion of a ≤ b for functions as for real numbers

f (n) is an asymptotic upper bound on g(n)

Provides the right framework for both our goals

Imdad ullah Khan (LUMS) Asymptotic Analysis 6 / 1

Big Oh

A function g(n) ∈ O
(
f (n)

)
if there exists constants c > 0 and n0 ≥ 0

such that
∀n ≥ n0 g(n) ≤ c · f (n)

2n2 + 3n + 7 = O(n2)

. c = 3 and n0 = 5

3n2

n2

2n2 + 3n + 7

Imdad ullah Khan (LUMS) Asymptotic Analysis 7 / 1

Big Oh

A function g(n) ∈ O
(
f (n)

)
if there exists constants c > 0 and n0 ≥ 0

such that
∀n ≥ n0 g(n) ≤ c · f (n)

3n3 + 5n log n = O(n3)

. c = 4 and n0 = 3

n3

4n3

3n3 + 5nlog2(n)

Imdad ullah Khan (LUMS) Asymptotic Analysis 8 / 1

Big Oh: Common Rules

The following two rules help simplify finding asymptotic upper bounds

Lower order terms are ignored

na dominates nb if a > b

Multiplicative constants are omitted

e.g. 7n4 + 3n3 + 10 = O(n4)

e.g. 3n3 + 5n log n = O(n3)

Imdad ullah Khan (LUMS) Asymptotic Analysis 9 / 1

Big Oh: Common Rules

The following two rules help simplify finding asymptotic upper bounds

Lower order terms are ignored

na dominates nb if a > b

Multiplicative constants are omitted

e.g. 7n4 + 3n3 + 10 = O(n4)

e.g. 3n3 + 5n log n = O(n3)

Imdad ullah Khan (LUMS) Asymptotic Analysis 9 / 1

Big Oh: Common Rules

A function g(n) ∈ O
(
f (n)

)
if there exists constants c > 0 and n0 ≥ 0

such that
∀n ≥ n0 g(n) ≤ c · f (n)

f (n) = pn2 + qn + r

≤ |p|n2 + |q|n2 + |r |n2

=
(
|p|+ |q|+ |r |

)
n2

This is true for all n ≥ 1, hence with c =
(
|p|+ |q|+ |r |

)
we get that

f (n) = O(n2)

Imdad ullah Khan (LUMS) Asymptotic Analysis 10 / 1

Big Oh: Justification to ignore lower order terms

Let the runtime of algorithm A be T (n) := n2 + 10n

T (n) = O(n2)

Consider an input size of 109, then

n2 + 100n = 1018 + 1011 and n2 = 1018

fractional error =
1011

1018
= 10−7

Goal 1: Determine the runtime of an algorithm on inputs of large size

For n = 109, T (n) = n2 + 10n is only 0.00001% more than n2

Imdad ullah Khan (LUMS) Asymptotic Analysis 11 / 1

Big Oh: Justification to ignore lower order terms

Let the runtime of algorithm A be T (n) := n2 + 10n

T (n) = O(n2)

Consider an input size of 109, then

n2 + 100n = 1018 + 1011 and n2 = 1018

fractional error =
1011

1018
= 10−7

Goal 1: Determine the runtime of an algorithm on inputs of large size

For n = 109, T (n) = n2 + 10n is only 0.00001% more than n2

Imdad ullah Khan (LUMS) Asymptotic Analysis 11 / 1

Big Oh: Justification to ignore lower order terms

Let the runtime of algorithm A be T (n) := n2 + 10n

T (n) = O(n2)

Consider an input size of 109, then

n2 + 100n = 1018 + 1011 and n2 = 1018

fractional error =
1011

1018
= 10−7

Goal 1: Determine the runtime of an algorithm on inputs of large size

For n = 109, T (n) = n2 + 10n is only 0.00001% more than n2

Imdad ullah Khan (LUMS) Asymptotic Analysis 11 / 1

Big Oh: Justification to ignore Coefficients

Coefficients do not really affect growth of functions

Goal 2: Determine how the runtime grows with increasing inputs

Linear f (n) = 5n

n : 5n

2n : 2(5n)

3n : 3(5n)

4n : 4(5n)

Quadratic f (n) = 7n2

n : 7n2

2n : 4(7n2)

3n : 9(7n2)

4n : 16(7n2)

Cubic f (n) = 2n3

n : 2n3

2n : 8(2n3)

3n : 27(2n3)

4n : 64(2n3)

Since we are concerned with scalability of algorithm, the same growth
factor is observed if we consider f (n) = n, f (n) = n2, and f (n) = n3

Imdad ullah Khan (LUMS) Asymptotic Analysis 12 / 1

Big Oh: Justification to ignore Coefficients

Coefficients do not really affect growth of functions

Goal 2: Determine how the runtime grows with increasing inputs

Linear f (n) = 5n

n : 5n

2n : 2(5n)

3n : 3(5n)

4n : 4(5n)

Quadratic f (n) = 7n2

n : 7n2

2n : 4(7n2)

3n : 9(7n2)

4n : 16(7n2)

Cubic f (n) = 2n3

n : 2n3

2n : 8(2n3)

3n : 27(2n3)

4n : 64(2n3)

Since we are concerned with scalability of algorithm, the same growth
factor is observed if we consider f (n) = n, f (n) = n2, and f (n) = n3

Imdad ullah Khan (LUMS) Asymptotic Analysis 12 / 1

Big Oh: Justification to ignore Coefficients

Coefficients do not really affect growth of functions

Goal 2: Determine how the runtime grows with increasing inputs

Linear f (n) = 5n

n : 5n

2n : 2(5n)

3n : 3(5n)

4n : 4(5n)

Quadratic f (n) = 7n2

n : 7n2

2n : 4(7n2)

3n : 9(7n2)

4n : 16(7n2)

Cubic f (n) = 2n3

n : 2n3

2n : 8(2n3)

3n : 27(2n3)

4n : 64(2n3)

Since we are concerned with scalability of algorithm, the same growth
factor is observed if we consider f (n) = n, f (n) = n2, and f (n) = n3

Imdad ullah Khan (LUMS) Asymptotic Analysis 12 / 1

Big Oh: Justification to ignore Coefficients

Coefficients do not really affect growth of functions

Goal 2: Determine how the runtime grows with increasing inputs

Linear f (n) = 5n

n : 5n

2n : 2(5n)

3n : 3(5n)

4n : 4(5n)

Quadratic f (n) = 7n2

n : 7n2

2n : 4(7n2)

3n : 9(7n2)

4n : 16(7n2)

Cubic f (n) = 2n3

n : 2n3

2n : 8(2n3)

3n : 27(2n3)

4n : 64(2n3)

Since we are concerned with scalability of algorithm, the same growth
factor is observed if we consider f (n) = n, f (n) = n2, and f (n) = n3

Imdad ullah Khan (LUMS) Asymptotic Analysis 12 / 1

Big Oh: Justification to ignore Coefficients

Coefficients do not really affect growth of functions

Goal 2: Determine how the runtime grows with increasing inputs

Linear f (n) = 5n

n : 5n

2n : 2(5n)

3n : 3(5n)

4n : 4(5n)

Quadratic f (n) = 7n2

n : 7n2

2n : 4(7n2)

3n : 9(7n2)

4n : 16(7n2)

Cubic f (n) = 2n3

n : 2n3

2n : 8(2n3)

3n : 27(2n3)

4n : 64(2n3)

Since we are concerned with scalability of algorithm, the same growth
factor is observed if we consider f (n) = n, f (n) = n2, and f (n) = n3

Imdad ullah Khan (LUMS) Asymptotic Analysis 12 / 1

Non tightness of Big Oh

Note: O(·) expresses only an upper bound on growth rate of a function

. It does not necessarily give the exact growth rate of the function

For example, f (n) = 3n2 + 4n + 5 = O(n2) it is also O(n3)

Indeed, f (n) ≤ 12n2 and also f (n) ≤ 12n3

Imdad ullah Khan (LUMS) Asymptotic Analysis 13 / 1

Big Oh: Finding the right constants

Let g(n) = 7n + 4 and f (n) = n

g(n) = O(f (n))

. take c = 8 and n0 = 4, 7n + 4 ≤ 8(n) whenever n0 ≥ 4,

1 To get c: We want 7n + 4 ≤ cn

Solving the inequality for c , we get c ≥ 7n
n + 4

n

For n ≥ 4, 8 ≥ 7 + 4
n

. Observe that limn→∞
7n+4
n → 7, but this (c = 7) would require n0

to be approaching ∞, so we take c = 8

2 To get n0: We want 7n + 4 ≤ 8n, this is true whenever n ≥ 4

Imdad ullah Khan (LUMS) Asymptotic Analysis 14 / 1

Big Oh: Finding the right constants

n = 4

8n

7n + 4

Imdad ullah Khan (LUMS) Asymptotic Analysis 15 / 1

Big Oh: Finding the right constants

Let f (n) = 6n + 24 and h(n) = n2,

f (n) = O(h(n))

As limn→∞
6n + 24

n2
→ 0, so any c > 0 will work.

for c = 1, we want

6n + 24 ≤ 1 · n2

which is true whenever n ≥ 10

So we choose c = 1 and n0 = 10

More examples in lecture notes and problem set

Imdad ullah Khan (LUMS) Asymptotic Analysis 16 / 1

Big Oh: Finding the right constants

6n + 24 n2 n = 10

Imdad ullah Khan (LUMS) Asymptotic Analysis 17 / 1

Asymptotic-Complexity Classes

Class Name Class Symbol Example

Constant O(1) Comparison of two integers

Logarithmic O(log(n)) Binary Search, Exponentiation

Linear O(n) Linear Search

Log-Linear On(log(n)) Merge Sort

Quadratic O(n2) Integer multiplications

Cubic O(n3) Matrix multiplication

Polynomial O(na), a ∈ R

Exponential O(an), a ∈ R Print all subsets

Factorial O(n!) Print all permutations

n! � 2n � n3 � n2 � nlogn � n � logn � 1

Imdad ullah Khan (LUMS) Asymptotic Analysis 18 / 1

Growth Rates of Functions

10n n3

n2

2nlog2n

n

2log2n

Imdad ullah Khan (LUMS) Asymptotic Analysis 19 / 1

Big Oh: Why does it make sense?

Runtimes of algorithms of different runtime for input size n (on 1GHz
PC). Assume that each operation takes 1 ns

n O(log n) O(n) O(n log n) O(n2) O(2n) O(n!)

10 0.003µs 0.01µs 0.033µs 0.1µs 1µs 3.63ms

20 0.004µs 0.02µs 0.086µs 0.4µs 1ms 77.1 yrs

30 0.005µs 0.03µs 0.147µs 0.9µs 1sec 8 · 1015 yrs
40 0.005µs 0.04µs 0.213µs 1.6µs 18.3min very long

50 0.006µs 0.05µs 0.282µs 2.5µs 13 days very long

100 0.007µs 0.10µs 0.644µs 10µs 4 · 1013 yrs very long

103 0.010µs 1.00µs 9.966µs 1ms very long very long

104 0.013µs 10µs 130µs 100ms very long very long

105 0.017µs 0.10ms 1.67ms 10sec very long very long

106 0.020µs 1ms 19.93ms 16.7min very long very long

107 0.023µs 0.01sec 0.23sec 1.16 days very long very long

108 0.027µs 0.10sec 2.66sec 115.7 days very long very long

109 0.030µs 1sec 29.90sec 31.7 yrs very long very long

Imdad ullah Khan (LUMS) Asymptotic Analysis 20 / 1

